© Benaki Phytopathological Institute
Skandalis
et al.
46
Navarro, L., Jay, F., Nomura, K., He, S.Y. and Voinnet, O.
2008. Suppression of the microRNA pathway by
bacterial effector proteins.
Science,
321: 964-967.
Niño-Liu, D.O., Ronald, P.C. and Bogdanove, A.J.
2006.
Xanthomonas oryzae
pathovars: model
pathogens of a model crop.
Mol. Plant Pathol.,
7: 303-24.
Nordfelth, R., Kauppi, A. M., Norberg, H.A., Wolf-
Watz, H. and Elofsson, M. 2005. Small-molecule
inhibitors specifically targeting Type III secre-
tion.
Infection and Immunity,
73: 3104-14.
Palacio-Bielsa, A., Cubero, J., Cambra, M.A., Colla-
dos, R., Berruete, I.M. and López, M.M. 2011. De-
velopment of an efficient real-time quantitative
PCR protocol for detection of
Xanthomonas ar-
boricola
pv.
pruni
in Prunus species.
Appl. Envi-
ron. Microbiol.,
77: 89-97.
Panopoulos, N.J., Walton, J.D. and Willis, D.K. 1984.
Genetic and biochemical basis of virulence in
plant pathogens. In
Plant Gene Research
, vol. 1,
eds. Hohn T, Verma DPS, pp. 339-374, Vienna,
Autria: Springer-Verlag.
Panopoulos, N. and Peet, R.C. 1985. The molecular
genetics of plant pathogenic bacteria and their
plasmids.
Annu. Rev. Phytopathol
., 23: 381-19.
Park, D.S., Shim, J.K., Kim, J.S., Kim, B.Y., Kang, M.J.,
Seol, Y.J., Hahn, J.H., Shrestha, R., Lim, C.K., Go,
S.J. and Kim, H.G. 2006. PCR-based sensitive and
specific detection of
Pectobacterium atrosepti-
cum
using primers based on
Rhs
family gene se-
quences.
Plant Pathology,
55: 625-629.
Park, S.Y., Lee, Y.S., Koh, Y.J., Hur, J.S. and Jung, J.S.
2010. Detection of
Xanthomonas arboricola
pv.
pruni
by PCR using primers based on DNA se-
quences related to the
hrp
genes
. J. Microbiol.,
48: 554-558.
Pastrik, K.H. 2000. Detection of
Clavibacter mich-
iganensis subsp. sepedonicus
in potato tubers
by multiplex PCR with co-amplification of host
DNA.
Europ. J. of Plant Pathol.,
106:155–165.
Pavli, U.I., Kelaidi, G.I., Tampakaki, A.P. and Skaracis,
G.N. 2011. The
hrpZ
gene of
Pseudomonas syrin-
gae
pv.
phaseolicola
enhances resistance to rhi-
zomania disease in transgenic
Nicotiana ben-
thamiana
and sugar beet. PLoS One. 2011; 6(3):
e17306. doi: 10.1371/journal.pone.0017306
Pelludat, C., Duffy, B. and Frey, J.E. 2009. Design
and development of a DNA microarray for rap-
id identification of multiple European quaran-
tine phytopathogenic bacteria.
Europ. J. of Plant
Pathol.,
125: 413-423.
Ritter, C. and Dangl, J.L. 1996. Interference between
Two Specific Pathogen Recognition Events Me-
diated by Distinct Plant Disease Resistance
Genes
.
Plant Cell,
8: 251–257
Sarkar, S.F., Gordon, J.S., Martin, G.B. and Guttman,
D.S. 2006. Comparative genomics of host-spe-
cific virulence in
Pseudomonas syringae
.
Genet-
ics,
174: 1041–56.
Sarris, P.F., Skandalis, N., Kokkinidis, M. and Panopo-
ulos, N.J. 2010.
In silico
analysis reveals multiple
putative type VI secretion systems and effector
proteins in
Pseudomonas syringae
pathovars.
Mol. Plant Path.,
11: 795-804.
Sarris, P.F., Trantas, E.A, Skandalis, N., Tampakaki A.P.,
Kapanidou, M., Kokkinidis, M. and Panopoulos,
N.J. 2012. Phytobacterial Type VI secretion sys-
tem - gene distribution, phylogeny, structure
and biological functions.
In
Plant Pathology,
Cumagun, C.J. (Ed.), ISBN: 978-953-51-0489-6,
InTech, Available from:
n.com/books/plant-pathology/phytobacteri-
al-type-vi-secretion-system-gene-distribution-
phylogeny-structure-and-biological-function.
Schaad, N.W., Cheong, S.S., Tamaki, S., Hatziloukas,
E. and Panopoulos, N.J. 1995. A combined bio-
logical and enzymatic amplification (BIO-PCR)
technique to detect
Pseudomonas syringae
pv.
phaseolicola in bean seed extracts.
Phytopa-
thology,
85: 243-248.aa
Simpson, A.J., Reinach, F.C. Arruda, P., Abreu, F.A.,
Acencio, M.
et al.
2000. The genome sequence
of the plant pathogen
Xylella fastidiosa.
The
Xy-
lella fastidiosa
Consortium of the Organization
for Nucleotide Sequencing and Analysis.
Na-
ture
, 406: 151-159.
Skandalis, N., Sarris, P.F., Ioannou, M., Kafetzopou-
los, D. and Panopoulos, N.J. 2010. Development
of new diagnostic tools based on i
n silico
anal-
ysis of secretion systems of Gram
-
phytopatho-
genicbacteria.
12th ICPPB Meeting
Reunion Is-
land, France.
Stall, R.E., Jones, J.B. and Minsavage, G.V. 2009. Du-
rability of resistance in tomato and pepper to
xanthomonads
causing bacterial spot.
Annu Rev
Phytopathol.,
47: 265-84.
Staskawicz, B.J., Dahlbeck, D. and Keen, N.T. 1984.
Cloned avirulence gene of
Pseudomonas syrin-
gae
pv.
glycinea
determines race specific incom-
patibility on
Glycine max
(L.) Merr.
Proc. Natl.
Acad. Sci. USA,
81: 6024–28.
Strobel, N.E., Ji, C., Gopalan, S., Kuc, J.A. and He, S.Y.
1996. Induction of systemic acquired resistance
in cucumber by
Pseudomonas syringae
pv.
syrin-
gae
61 HrpZPss protein.
Plant J.,
9: 431–439.
Tampakaki, A.P. and Panopoulos, N.J. 2000. Elicita-
tion of hypersensitive cell death by extracellu-
larly targeted HrpZ Psph produced in planta.
Mol. Plant Microbe Interact
., 13: 1366-74.
Tampakaki, A.P., Fadouloglou, V.E., Gazi, A.D., Panopou-
los, N.J. and Kokkinidis, M., 2004. Conserved features
of type III secretion.
Cell. Microbiol.,
6: 805–816.
Tampakaki, N., Skandalis, N., Sarris, P.F., Charo-
va, S., Gazi, T., Kokkinidis, M. and Panopoulos,
N.J. 2010. Playing the “harp”: Evolution of Our
Understanding of
hrp
genes
. Ann. Rev. Phyto-
pathol.,
48: 347-370.
Troisfontaines, P. and Cornelis, G.R. 2005. Type III se-
1...,8,9,10,11,12,13,14,15,16,17 19,20,21,22,23,24,25,26,27,28,...42